Segmentation of multispectral magnetic resonance image using penalized fuzzy competitive learning network.

نویسندگان

  • J S Lin
  • K S Cheng
  • C W Mao
چکیده

Segmentation (tissue classification) of the medical images obtained from Magnetic resonance (MR) images is a primary step in most applications of computer vision to medical image analysis. This paper describes a penalized fuzzy competitive learning network designed to segment multispectral MR spin echo images. The proposed approach is a new unsupervised and winner-takes-all scheme based on a neural network using the penalized fuzzy clustering technique. Its implementation consists of the combination of a competitive learning network and penalized fuzzy clustering methods in order to make parallel implementation feasible. The penalized fuzzy competitive learning network could provide an acceptable result for medical image segmentation in parallel processing using the hardware implementation. The experimental results show that a promising solution can be obtained using the penalized fuzzy competitive learning neural network based on least squares criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced unsupervised segmentation of multispectral Magnetic Resonance images

Image segmentation is an established necessity for an improved analysis of Magnetic Resonance images. Neural network-based clustering has been shown in literature to yield good results, yet the possibility of transforming the input feature space in order to enhance the clustering process has gone largely unexplored. In this paper we focus on brain imaging and present a new algorithm for unsuper...

متن کامل

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

Automated Prostate Gland Segmentation Based on an Unsupervised Fuzzy C-Means Clustering Technique Using Multispectral T1w and T2w MR Imaging

Prostate imaging analysis is difficult in diagnosis, therapy, and staging of prostate cancer. In clinical practice, Magnetic Resonance Imaging (MRI) is increasingly used thanks to its morphologic and functional capabilities. However, manual detection and delineation of prostate gland on multispectral MRI data is currently a time-expensive and operator-dependent procedure. Efficient computer-ass...

متن کامل

An Adaptive Fuzzy Segmentation Algorithm for Three-Dimensional Magnetic Resonance Images

An algorithm is proposed for the fuzzy segmentation of two and three-dimensional multispectral magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities, also known as shading artifacts. The algorithm is an extension of the two-dimensional adaptive fuzzy C-means algorithm (2-D AFCM) presented in previous work by the authors. This algorithm models the intensity inhomog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers and biomedical research, an international journal

دوره 29 4  شماره 

صفحات  -

تاریخ انتشار 1996